Part Number Hot Search : 
HZK9L MX23L BSS214N SA156 TDA1037 SK1640C 2B5UM 1N4103
Product Description
Full Text Search
 

To Download 10-F006PPA020SB01-M685B10 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-F006PPA020SB01-M685B10 preliminary datasheet flowpim 0 + pfc 2nd 600v/20a clip in pcb mounting trench fieldstop igbt's for low saturation losses latest generation superjunction mosfet for pfc industrial drives embedded drives 10-F006PPA020SB01-M685B10 t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 26 t c =80c 36 t h =80c 32 t c = 80c 48 maximum junction temperature t j max 150 c power dissipation per diode i 2 t w a 200 types i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 200 a features flowpim0+pfc 2nd target applications schematic dc forward current surge forward current t j =150c t j =t j max t p =10ms t j =t j max p tot copyright vincotech 1 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition pfc mosfet v ds 600 v t h =80c 20 t c = 80c 24 i d = 9,3a v dd =50v i d =9,3a v dd =50v m o sfet dv/dt ruggedness dv/dt v ds =0...480v 50 v /ns t h =80c 64 t c = 80c 97 g ate-source peak voltage v gs 20 v dv/ dt v ds =0...400v , i sd i d t j = 25c 15 v /ns t j max 15 0 c pfc diode t h =80c 23 t c = 80c 30 t h = 80c 3 6 t c = 80c 54 pfc shunt inverter transistor t h =80c 20 t c = 80c 27 t h = 80c 41 t c = 80c 6 2 t sc t j 1 50c 6 s v cc v ge =15v 36 0 v t j =25c t j =25c 9 9 6 0 20 159 9,3 1,72 1135 t j =t j max 55 p t ot gate-emitter peak voltage v a p u lsed drain current p tot e ar avalanche current, repetitive i ar maximum junction temperature i dpulse i d a a e as mj w a va lanche energy, repetitive avalanche energy, single pulse mj a a c w a peak repetitive reverse voltage t j =25c 15 0 dc forward current repetitive peak forward current t j max 6 0 0 drain to source breakdown voltage dc drain current power dissipation reverse diode dv/dt t j =t j max t j =t j max t j =25c pulsed collector current power dissipation per igbt maximum junction temperature short circuit ratings turn off safe operating area collector-emitter break down voltage dc collector current power dissipation maximum junction temperature dc forward current power dissipation per shunt t j =t j max t j =t j max v c e 600v, tj top max t j =t j max t p limited by t j max a t c =25c t c =25c 60 0 3 a v w t p limited by t j max 60 v c e i c p tot v ge i cpulse t j max p tot i f i f v rrm i frm w a v c 1 75 copyright vincotech 2 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 26 t c = 80c 34 t h = 80c 4 0 t c = 80c 60 dc link capacitor thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 60 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition cl earance -40+(tjmax - 25) c storage temperature t stg -40+125 c t c = 25c ma x.dc voltage v max 500 v t j =t j max t p limited by t j max dc forward current t j =t j max a i f v rrm t j =25c a w 1 7 5 c maximum junction temperature peak repetitive reverse voltage repetitive peak forward current power dissipation per diode v t j max i frm p tot 600 copyright vincotech 3 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet pa rameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,20 tj=125c 1,17 tj=25c 0,92 tj=125c 0,81 tj=25c 11 tj=125c 14 tj=25c 0,05 tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,2 0 k/w tj=25c 70 tj=125c 140 tj=25c 2,4 3 3,6 tj=125c tj=25c 100 tj=125c tj=25c 5 tj=125c tj=25c 24 tj=125c 23 tj=25c 10 tj=125c 11 tj=25c 228 tj=125c 237 tj=25c 13 tj=125c 11 tj=25c 0,22 tj=125c 0,23 tj=25c 0,12 tj=125c 0,14 tj=25c tj=125c tj=25c tj=125c tj=25c tj=125c tj=25c 1,40 1,7 tj=125c 1,55 tj=25c 480 tj=125c tj=25c 7 tj=125c 6 tj=25c 12 tj=125c 13 tj=25c 0,14 tj=125c 0,13 tj=25c 0,012 tj=125c 0,013 di(rec)max tj=25c 1529 /dt tj=125c 1550 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,9 6 k/w thermal grease thickness 50um = 1 w/mk k/w t j=25c 21 25,8 10 480 15 mws k/w nh a/s 0,00172 v (gs)th na v ns mws v nc m ns a 1, 0 9 3 215 3800 87 1600 21 temperature coeficient r1 value peak recovery current peak rate of fall of recovery current reverse recovery charge pfc shunt 600 24 1 5 gate threshold voltage 20 a c m ppm/k 10 0 6 0 0 15 reverse current i r v v m ma 25 25 2 5 characteristic values forward voltage th reshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 400 10 0 g ate to source leakage current static drain to source on resistance value co n ditions rgoff=8 t r t d(off) t d(on) i gss pfc mosfet gate resistance ga t e to source charge turn-on energy loss per pulse output capacitance gate to drain charge turn on delay time rise time turn off delay time pfc diode forward voltage rev erse leakage current reverse recovery time reverse recovered energy inductance internal heat resistance q rr i rrm i rm c iss e rec l r thjh c oss r g t c r thi t rr r q gs q gd q ge e off total gate charge fall time turn-off energy loss per pulse input capacitance v f thermal resistance chip to heatsink per chip rgon=8 r ds(on) t f e on 0 f=1mhz rgon=8 rgon=8 20c to 60c ze r o gate voltage drain current i dss 0 na 400 30 10 21 0,85 pf 170 10 copyright vincotech 4 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet pa rameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value co nditions tj=25c 5 5,6 6,5 tj=125c tj=25c 1,1 1,58 1,9 tj=125c 1,76 tj=25c 1,1 tj=125c tj=25c 300 tj=125c tj=25c 67 tj=125c 67 tj=25c 27 tj=125c 29 tj=25c 126 tj=125c 145 tj=25c 54 tj=125c 75 tj=25c 0,68 tj=125c 0,96 tj=25c 0,48 tj=125c 0,71 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,3 2 k/w tj=25c 1,25 1,64 1,95 tj=125c 1,66 tj=25c 10 tj=125c 13 tj=25c 204 tj=125c 257 tj=25c 1,13 tj=125c 2,01 di(rec)max tj=25c 31 /dt tj=125c 71 tj=25c 0,31 tj=125c 0,54 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,40 k/ w tj=25c ma v pf 7 1 a m ws ns nc na tj=25c tc=100c tc=100c tj=25c 32 rgon=16 thermistor dc link capacitor c value c r/r r100=1486 rated resistance r pow er dissipation constant deviation of r100 mw/k power dissipation p mw 400 400 20 0,00029 25 0 480 20 600 collector-emitter saturation voltage collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current reverse recovery time reverse recovered energy peak rate of fall of recovery current turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current re v erse transfer capacitance diode forward voltage gate charge c ies 15 20 20 15 rgon=16 0 20 1 5 r goff=16 f=1mhz ns v c m ws a/s input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage v ge(th) v ce(sat) i ces r gint i ges t f e on e off t d(on) i rrm v f erec c oss c rss q rr t rr q gate t r t d(off) v ce =v ge 0 15 3,5 210 5 -5 % nf 100 22000 30 v n o en tj=25c 120 1100 b-value b (25/50) tol. 3% tj=25c k b (25/100) tj=25c 4000 k b-value tol. 3% vincotech ntc reference a tj=25c copyright vincotech 5 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 out put inverter igbt figure 4 output inverter fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 10 v output inverter typical output characteristics 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) 0 15 30 45 60 75 0 4 8 12 16 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 25 50 75 100 125 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 6 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v ce = 40 0 v v ge = 1 5 v v ge = 1 5 v r gon = 16 i c = 20 a r goff = 16 fi gure 7 out put inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v ce = 40 0 v v ge = 1 5 v v ge = 1 5 v r gon = 16 i c = 20 a output inverter e on high t e off high t e on low t e off low t 0 0 , 3 0,6 0,9 1,2 1,5 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1,5 2 0 16 32 48 64 80 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0, 1 0,2 0,3 0,4 0,5 0,6 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,15 0,3 0,45 0,6 0,75 0 16 32 48 64 80 r g ( w ) e (mws) copyright vincotech 7 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 2 5 c t j = 12 5 c v ce = 40 0 v v ce = 40 0 v v ge = 1 5 v v ge = 1 5 v r gon = 16 i c = 20 a r goff = 16 fi gure 11 out put inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v r = 40 0 v v ge = 1 5 v i f = 20 a r gon = 16 v g e = 1 5 v output inverter t doff t f t don t r 0,00 0, 01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t ( m s) t rr t j = t jmax -25c t rr t j = 25c 0 0, 1 0,2 0,3 0,4 0 20 40 60 80 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0, 01 0,10 1,00 0 16 32 48 64 80 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,00 0, 05 0,10 0,15 0,20 0,25 0,30 0 5 10 15 20 25 30 i c (a) t rr ( m s) copyright vincotech 8 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at a t at t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v r = 40 0 v v ge = 1 5 v i f = 20 a r gon = 16 v g e = 1 5 v figure 15 out put inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v r = 40 0 v v ge = 1 5 v i f = 20 a r gon = 16 v g e = 1 5 v output inverter t j = t jmax - 25c t j = 25c i rrm 0 10 2 0 30 40 0 16 32 48 64 80 r gon ( w ww w ) i rrm (a) i rrm t j = t jmax -25c q rr t j = 25c q rr 0,0 0 , 5 1,0 1,5 2,0 2,5 0 20 40 60 80 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 3 6 9 12 1 5 0 5 10 15 20 25 30 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0 , 5 1,0 1,5 2,0 2,5 0 5 10 15 20 25 30 i c (a) q rr ( m c) copyright vincotech 9 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 / dt,di rec /dt = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v r = 40 0 v v ge = 1 5 v i f = 20 a r gon = 16 v g e = 1 5 v figure 19 out put inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = t p / t d = t p / t r thjh = 2, 32 k/w r thjh = 1, 88 k/w r thjh = 2, 40 k/w r thjh = 1, 94 k/w r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 4,4e+00 0,06 3,6e+00 0,07 4,6e+00 0,06 3,7e+00 0,30 3,8e-01 0,24 3,1e-01 0,27 4,8e-01 0,22 3,9e-01 1,26 8,1e-02 1,02 6,6e-02 1,13 8,5e-02 0,92 6,9e-02 0,34 1,2e-02 0,27 9,6e-03 0,52 2,0e-02 0,42 1,6e-02 0,14 1,4e-03 0,12 1,1e-03 0,20 2,8e-03 0,16 2,3e-03 0,21 1,3e-04 0,17 1,0e-04 0,21 3,3e-04 0,17 2,7e-04 fwd thermal model values igbt thermal model values output inverter phase change interface the rmal grease phase change interface thermal grease t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt 0 1 0 00 2000 3000 4000 5000 6000 0 16 32 48 64 80 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt 0 200 400 600 800 1000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 / dt copyright vincotech 10 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c v ge = 15 v figure 23 out put inverter fwd figure 24 output inverter fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c output inverter 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 0 50 100 150 200 t h ( o c) i c (a) 0 15 30 45 60 75 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 11 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gat e voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at a t d = single pulse i c = 2 0 a t h = 80 oc v ge = 1 5 v t j = t jmax oc figur e 27 out put inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical s hort circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at a t v ce = 6 0 0 v v ce 60 0 v t j 17 5 oc t j = 17 5 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 140 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 50 100 150 200 250 300 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc) copyright vincotech 12 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 o c u c cminus =u ccplus switching mode : 3 level switching output inverter 0 10 20 30 40 50 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 13 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 1 pfc mosfet figure 2 pfc mosfet typical output characteristics typi cal output characteristics i d = f(v ds ) i d = f(v ds ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v gs from 0 v to 20 v in steps of 2 v v gs from 0 v to 20 v in steps of 2 v figure 3 pfc mosfet figure 4 pfc fwd typical transfer characteristics typi cal diode forward current as a function of forward voltage i d = f(v gs ) i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ds = 10 v pfc 0 20 40 60 80 100 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 2 4 6 8 10 v ds (v) i d (a) 0 10 20 30 40 50 0 2 4 6 8 10 v ds (v) i d (a) 0 5 10 15 20 25 0 1 2 3 4 5 6 v gs (v) i d (a) t j = 25c t j = t jmax -25c copyright vincotech 1 4 r evision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 5 pfc mosfet figure 6 pfc mosfet typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ds = 40 0 v v ds = 40 0 v v gs = 10 v v gs = 10 v r gon = 8 i d = 21 a r goff = 8 figur e 7 pfc mosfet figure 8 pfc mosfet typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ds = 40 0 v v ds = 40 0 v v gs = 10 v v gs = 10 v r gon = 8 i d = 21 a r goff = 8 pfc t j = t jmax -25c e rec t j = 25c e rec 0,000 0, 003 0,006 0,009 0,012 0,015 0 5 10 15 20 25 30 i c (a) e (mws) e rec t j = t jmax - 25c e rec t j = 25c 0,00 0, 01 0,02 0,03 0,04 0 10 20 30 40 r g ( w ww w ) e (mws) e off e on e on e off 0 0, 1 0,2 0,3 0,4 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e off e on e on t j =25c e off 0 0,2 0,4 0,6 0,8 0 8 16 24 32 40 r g ( w ww w ) e (mws) copyright vincotech 15 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 9 pfc mosfet figure 10 pfc mosfet typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i d ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 2 5 c t j = 12 5 c v ds = 40 0 v v ds = 40 0 v v gs = 10 v v gs = 10 v r gon = 8 i c = 21 a r goff = 8 figur e 11 pfc fwd figure 12 pfc fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v r = 40 0 v v ge = 10 v i f = 21 a r gon = 8 v gs = 10 v pfc t doff t don t r 0,00 0, 01 0,10 1,00 0 5 10 15 20 25 30 i d (a) t ( m s) t doff t don t r 0,00 0, 01 0,10 1,00 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t rr t j = t jmax -25c t rr t j = 25c 0,000 0, 015 0,030 0,045 0,060 0,075 0,090 0 8 16 24 32 40 r gon ( w ww w ) t rr ( m s) t rr t rr 0 0, 003 0,006 0,009 0,012 0,015 0 5 10 15 20 25 30 i c (a) t rr ( m s) copyright vincotech 16 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 13 pfc fwd figure 14 pfc fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at a t at t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v r = 400 v v ge = 10 v i f = 21 a r gon = 8 v gs = 10 v figur e 15 pfc fwd figure 16 pfc fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v r = 40 0 v v ge = 10 v i f = 21 a r gon = 8 v gs = 10 v pfc t j = t jmax -25c i rrm t j = 25c i rrm 0 4 8 12 1 6 20 0 8 16 24 32 40 r go n ( w ww w ) irr m (a) q rr t j = t jmax - 25c q rr t j = 25c 0,00 0 , 03 0,06 0,09 0,12 0,15 0 8 16 24 32 40 r gon ( w ) q rr ( m c) t j = t jmax - 25c i rrm t j = 25c i rrm 0 2 4 6 8 10 0 5 1 0 15 20 25 30 i c (a) irr m (a) q rr t j = t jmax - 25c q rr t j = 25c 0 0 , 03 0,06 0,09 0,12 0,15 0 5 10 15 20 25 30 i c (a) q rr ( m c) copyright vincotech 17 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 17 pfc fwd figure 18 pfc fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 / dt,di rec /dt = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 40 0 v v r = 40 0 v v ge = 10 v i f = 21 a r gon = 8, 01 v gs = 10 v figure 19 pfc mosfet figure 20 pfc fwd igbt/mosfet transient thermal impedance fwd transient t hermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = t p / t d = t p / t r thjh = 1, 09 k/w r thjh = 0, 88 k/w r thjh = 1, 96 k/w r thjh = 1, 59 k/w r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,06 3,95e+00 0,05 3,20e+00 0,10 3,09e+00 0,08 2,51e+00 0,28 4,91e-01 0,23 3,98e-01 0,50 3,43e-01 0,41 2,78e-01 0,53 1,37e-01 0,43 1,11e-01 0,95 8,40e-02 0,77 6,81e-02 0,13 2,28e-02 0,11 1,85e-02 0,26 1,66e-02 0,21 1,35e-02 0,05 3,27e-03 0,04 2,66e-03 0,16 2,77e-03 0,13 2,24e-03 0,03 5,12e-04 0,03 4,15e-04 pfc fwd thermal model values ig bt thermal model values thermal grease phase change interface thermal grease phase change interface t j = 25c t j = t jmax - 25c 0 10 00 2000 3000 4000 5000 6000 0 8 16 24 32 40 r g on ( w ) di rec / dt (a/ m s) di 0 /dt di r ec /dt t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax -25c t j = 25c 0 50 0 1000 1500 2000 2500 3000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ m s) di 0 /dt di r ec /dt copyright vincotech 18 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 21 pfc mosfet figure 22 pfc mosfet power dissipation as a coll ector/drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc v gs = 10 v figure 23 pfc fwd figure 24 pfc fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc pfc 0 30 60 90 120 150 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 19 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figur e 25 pfc mosfet figure 26 pfc mosfet safe operating area as a function gat e voltage vs gate charge of drain-source voltage i d = f(v ds ) v gs = f(qg) at a t d = single pulse i d = 2 1 a t h = 80 oc v gs = 10 v t j = t jmax oc figur e 29 ig b t reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 o c u c cminus =u ccplus switching mode : 3phase spwm pfc v ds (v) i d (a) 10 3 10 0 10 -1 10 1 10 2 10 3 10us 100us 1ms 10ms 100ms dc 10 2 10 0 0 2 4 6 8 10 0 30 60 90 120 150 180 qg (nc) v gs (v) 120v 480v 0 10 20 30 40 50 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 20 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 2, 20 k/w figure 3 rec tifier diode figure 4 rectifier diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc input rectifier bridge 0 20 40 60 80 0 0,5 1 1,5 2 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 21 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typi cal ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4 0 00 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100 /25 11 25 )( tt b ertr copyright vincotech 22 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet t j 125 c r gon 16  r goff 16  figur e 1 out put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = - 1 5 v v ge (0%) = -1 5 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 40 0 v v c (100%) = 40 0 v i c (100%) = 21 a i c (100%) = 21 a t doff = 0, 15 s t don = 0, 07 s t eoff = 0, 40 s t eon = 0, 24 s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 40 0 v v c (100%) = 40 0 v i c (100%) = 21 a i c (100%) = 21 a t f = 0, 08 s t r = 0, 03 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 5 0 75 100 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 1 00 150 200 2,9 3 3,1 3,2 3,3 3,4 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 5 0 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c 10% i c90% -50 0 50 1 00 150 200 3,05 3,1 3,15 3,2 3,25 3,3 3,35 time(us) % t r v ce i c copyright vincotech 2 3 r evision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 8, 37 kw p on (100%) = 8, 37 kw e off (100%) = 0, 71 mj e on (100%) = 0, 96 mj t eoff = 0, 40 s t eon = 0, 24 s figure 7 out put inverter igbt figure 8 output inverter fwd gate voltage vs gate charge (measured) turn- off switching waveforms & definition of t rr v geoff = -1 5 v v d (100%) = 40 0 v v geon = 15 v i d (100%) = 21 a v c (100%) = 40 0 v i rrm (100%) = -1 3 a i c (100%) = 21 a t rr = 0, 26 s q g = 17 9,93 nc switching definitions output inverter i c 1% v ge 90% -25 0 25 5 0 75 100 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 5 0 75 100 125 150 2,9 3 3,1 3,2 3,3 3,4 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -1 00 -50 0 50 100 150 2,9 3,0 3,1 3,2 3,3 3,4 3,5 time(us) % i d v d fitted copyright vincotech 2 4 r evision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 2 1 a p rec (100%) = 8, 37 kw q rr (100%) = 2, 01 c e rec (100%) = 0, 54 mj t qrr = 0, 52 s t erec = 0, 52 s switching definitions output inverter t qrr -100 - 5 0 0 50 100 150 2,9 3,1 3,3 3,5 3,7 3,9 % i d q rr time(us) -25 0 25 50 75 100 125 2,8 3 3,2 3,4 3,6 3,8 time(us) % p rec e rec t erec copyright vincotech 2 5 r evision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet t j 125 c r gon 8  r goff 8  figur e 1 pfc mosfet figure 2 pfc mosfet turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = 0 v v g e (0%) = 0 v v g e (100%) = 10 v v ge (100%) = 10 v v c (100%) = 40 0 v v c (100%) = 40 0 v i c (100%) = 21 a i c (100%) = 21 a t doff = 0, 24 s t don = 0, 02 s t eoff = 0, 27 s t eon = 0, 08 s figure 3 pfc mosfet figure 4 pfc mosfet turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 40 0 v v c (100%) = 40 0 v i c (100%) = 21 a i c (100%) = 21 a t f = 0, 0110 s t r = 0, 0110 s switching definitions pfc general conditions = = = i c10% v ge10% t don v ce3% -25 0 25 5 0 75 100 125 150 2,95 3 3,05 3,1 time(us) % i c v ce t eon v ge i c 1% v ce 90% v ge 90% -25 0 25 5 0 75 100 125 -0,1 0 0,1 0,2 0,3 time (us) % t doff t eoff v ce i c v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 5 0 75 100 125 0,150 0,175 0,200 0,225 0,250 time (us) % v ce i c t f i c 10% i c90% -25 0 25 5 0 75 100 125 150 3,00 3,02 3,04 3,06 3,08 time(us) % t r v ce i c copyright vincotech 2 6 r evision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 5 pfc mosfet figure 6 pfc mosfet turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 8, 4 kw p on (100%) = 8, 4 kw e off (100%) = 0, 14 mj e on (100%) = 0, 23 mj t eoff = 0, 27 s t eon = 0, 0825 s figure 7 pfc mosfet figure 8 pfc fwd gate voltage vs gate charge (measured) turn- off switching waveforms & definition of t rr v geoff = 0 v v d (100%) = 40 0 v v geon = 10 v i d (100%) = 21 a v c (100%) = 40 0 v i rrm (100%) = -6 a i c (100%) = 21 a t rr = 0, 01 s q g = 14 3,16 nc switching definitions pfc i c 1% u ge90% -25 0 25 5 0 75 100 125 -0,1 0 0,1 0,2 0,3 time (us) % p off e off t eoff u ce 3% u ge10% -25 0 25 5 0 75 100 125 2,95 3 3,05 3,1 time(us) % p on e on t eon -2 0 2 4 6 8 10 12 -10 10 30 50 70 90 110 130 150 qg (nc) uge (v) i rrm10% i rrm90% i rrm100% t rr -150 -1 00 -50 0 50 100 150 3 3,025 3,05 3,075 3,1 time(us) % i d u d fitted copyright vincotech 2 7 r evision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet figure 9 pfc fwd figure 10 pfc fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t e rec = integrating time for e rec ) i d (100%) = 2 1 a p rec (100%) = 8, 40 kw q rr (100%) = 0, 13 c e rec (100%) = 0, 03 mj t qint = 0, 10 s t erec = 0, 10 s switching definitions pfc t qint -50 0 50 1 00 150 2,98 3,03 3,08 3,13 3,18 time(us) % i d q rr -50 0 50 100 150 2,98 3,03 3,08 3,13 3,18 time(us) % p rec e rec t erec copyright vincotech 2 8 r evision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 17mm housing 10-F006PPA020SB01-M685B10 m685b10 m685b10 outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 29 revision: 1
10-F006PPA020SB01-M685B10 preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. target product status datasheet status definition this datasheet contains the design specifications for product development. specifications may change in any manner without notice. the data contained is exclusively intended for technically trained staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 30 revision: 1


▲Up To Search▲   

 
Price & Availability of 10-F006PPA020SB01-M685B10

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X